Group 8

MECENG 102B: 7Ro-BOT Final Report & Manual

May 14 2025

By: Menooa Avrand, Eyan Documet, James Gotesky, Rafael Petrosian

1. Opportunity

“For firefighters or power companies who are oper-
ating in hazardous and/or remote fire conditions, its
an autonomous cobot that extinguishes small fires via
manual or autonomous operation; it can also be used
to execute a preventive application of retardant.”

2. High-Level Strategy and Functional
Outcomes

mRo-BOT is a 2.5DoF robotic water gun intended for
autonomous detection and extinguishing of flames,
namely in remote and/or dangerous environments.
It operates under the following strategy:

1. The turret enters a passive patrol mode, au-
tonomously sweeping its field of view using an
IR camera to monitor for thermal anomalies.

2. The IR camera, interfaced via an ESP32, de-
tects elevated thermal signatures indicative of
potential fire sources and computes their tra-
jectories in real time.

3. Upon detection of a thermal threat, the sys-
tem engages fire retardant mechanisms, actu-
ating suppression until the thermal signature
subsides below a safe threshold.

A manual override capability is provided for human
operators to directly control detection or suppres-
sion systems as needed-this is controlled remotely
by a wireless controller. Furthermore, a preventa-
tive regime allows scheduled applications in high-risk
zones, where an agency can have mRo apply retar-
dant in a pre-described pattern.

In our original proposal, we stated the following
goals:

1. Accurate and precise firing of a stream of water
up to a distance of 6 meters

2. Fully functional automatic
regimes

3. Automated detection of sources of heat, posi-
tioning, and firing until extinguished.

4. Seamless transition to manual input, allowing
for natural control.

and manual

Due to limitations in the resolution of the Ther-
mal camera we selected, our autonomous mode is
only able to accomplish automatic extinguishing at
roughly 1/2 our goal. However, in manual mode, the
range we set out to achieve is possible with a skilled
operator.

3. Integrated Device Overview

Figure 1: Our fully-assembled device, with compo-
nents labeled.

1of 15

Group 8

MECENG 102B: 7Ro-BOT Final Report & Manual

May 14 2025

The device has two joints and a transmission: joint
A (“waist” /yaw), joint B (“wrist” /pitch), and trans-
mission C (firing state), giving 7Ro-BOT 2.5 degrees
of freedom.

4. Function-Critical Decisions and Calcu-
lations

4.1. Wrist and Waist Motors: NEMA17

When designing our robotic transmission, our group
spent significant time debating using Servo Motors
or Stepper motors. Ultimately we opted to use
NEMA17 stepper motors for the following rea-
sons:

e Stepper motors offer the flexibility of continu-
ous rotation, which is not possible with servo
motors.

e The compliance of stepper motors creates an
inherent safety-factor when dealing with hu-
man operators.

We verified our choice under the following hand-
calculations:

Holding torque (specs): Tmaz = 55 Ncm

Axial load rading (specs): Ppq: = 10N

Max. applied torque (CAD): 7 = 41.15mm -
21N ~ 8.64Ncm < Tae

e Max. axial load (CAD): P =
9.81m/s? =~ 6.54N < Pyup

0.667 kg -

Since both our maximum axial load and torque are
significantly less then what’s rated on the 42%*48
NEMA17’s spec-sheet (Stepper Motor Online), we
know it’s safe to use these motors for our applica-
tion. Motor speed was not considered, as our device
focuses more on precision that rapidity.

4.2. Firing Transmission: Polulu Motor

For our firing mechanism, we had to chose a mo-
tor that could deliver the very high torque the orig-
inal FunWee gun delivered via its gear reduction.
We also wanted to implement a design with a much
smaller volume, meaning we had to use a direct-drive
solution. For this case, the Polulu 298:1 Gear-
Reduction Motor was an obvious choice.

e A gear reduction is built-in to the motor in an
extremely consise volume, allowing very sim-
ple design and integration to FunWee’s Firing
Assembly.

e Sans encoder, the Polulu motor was notably
easy to integrate into our circuitry; using a
MOSFET as a “driver,” we’re able to power
the smaller motor using the same input as our
Wrist and Waist.

The rack and pinion on the off-the-shelf water gun
was operated using a 3.7V toy motor, with a likely
maximum radial load rating of 20.00 Nmm. Al-
though we did not characterize our spring stiffness
in order to calculate the radial load, compared to an
average 3.7V toy motor, our motor is capable of cre-
ating the necessary drive to move the rack and pin-
ion. Our 298:1 has a maximum load (at “60 RPM)
of 196.2 N mm (Polulu).

4.3. Material Choice: PLA and Metal

We selected PLA for structural parts to enable rapid,
low-cost 3D printing during iteration. Primitive
strength testing (trying to break some test pieces
with our bare hands) showed suprising reliability
when printed at approx. 15% 3D honeycomb infill.

We used metal flanged shaft couplers to maintain
metal-metal contacts between our NEMA17s and
our robotic segments.

5. Finalized Diagrams

5.1. Circuit Diagrams

Figure 2: Wiring diagram for the remote controller.

2 of 15

Group 8

MECENG 102B: 7Ro-BOT Final Report & Manual

May 14 2025

Figure 3: Wiring diagram for the water gun.

A4

Manual Mode

Controller Message

ctriMsg ledState = 2 ContygllerMesgade

ctriMsg.ledState = 1

Automatic Mode

Controller Message
ciriMsg. ledState = 3

Preventitive Mode

stz du v
¥ potias

Figure 4: State-transition diagram of the turret.

Joystick state changes/sendState() called
(Joystick
Moved

No events called Button state chang

/) and SV_Button called
—
Idi Button
© Pressed
Trigger state changes/sendState() called
Trigger
Activated

Figure 5: State-transition diagram of the remote
control.

6. Reflections and Recommendations

If we had an opportunity to continue development
(or start over), it would be interesting to try imple-
menting a WIFI-based solution for the remote con-
trol aspect of our project. In practice, we’d like the
mRo-BOT to be operated remotely from anywhere
in the world, as our project goals state it’s intended
for remote and/or dangerous areas.

For future students, we strongly recommend using
off-the-shelf components where possible to avoid “re-
inventing the wheel”—this was a significant boon for
our team. Dividing labor where possible is also help-
ful, as long as team-wide syncs are frequent.

Reflecting on our project outcomes, our team is
highly satisfied with the final implementation of
mRo-BOT. We successfully achieved all core objec-
tives in a robust and sleek system while meeting all
major course requirements.

3of15

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual May 14 2025

Appendix A: Bill of Materials

Item Name Source Quantity Unit Price Total Cost
Nema, 17 Stepper Motor Amazon 2 $10.99 $21.98
A4988 Stepper Motor Driver (2pc) Amazon 2 $3.80 $7.60
MLX90640 24x32 Thermal Cam Adafruit 1 $74.95 $74.95
Adafruit ESP32 MicroKit 2 $0.00 $0.00
Electric Water Gun Amazon 1 $35.99 $35.99
5mm Coupling Shafts Amazon 1 $7.99 $7.99
Power Supply Adapter Amazon 1 $13.99 $13.99
MOSFET Transistor ME102B Lab Room 1 $0.00 $0.00
Capacitor (220uF) ME102B Lab Room 1 $0.00 $0.00
PLA Filament (2pak) Amazon 1 $22.98 $22.98
281:1 Micro Metal Gearmotor HP 6V~ Amazon 1 $8.91 $8.91
Dual Axis Joystick Module Already Owned 1 $0.00 $0.00
Limit Switch Amazon 1 $5.99 $5.99
M3 Plain Washers Ace Hardware 8 $0.10 $0.80
M3x0.5 Hex-Head Nuts Ace Hardware 8 $0.35 $2.80
M3x0.5x16 Hex Bolts Ace Hardware 4 $0.85 $3.40
M3x0.5x30 Hex Bolts Ace Hardware 4 $0.85 $3.40
M3x0.5x10 Hex Bolts Ace Hardware 4 $0.85 $3.40
M3x0.5x4 Hex Bolts Ace Hardware 4 $0.85 $3.40
M2x0.4x12 Hex Bolt Ace Hardware 1 $0.10 $0.10
M2x0.4 Hex-Head Nut Ace Hardware 1 $0.10 $0.10
Wiring (Various) ME102B Lab Room n/a $0.00 $0.00
Polyethylene Tubing Amazon 1 $9.58 $9.58
1 Gallon Water Jug Already Owned 1 $0.00 $0.00
Zip Ties (Various) Already Owned n/a $0.00 $0.00
USB Type-C Cable Already Owned 2 $0.00 $0.00
Breadboard (Various Sizes) Already Owned 2 $0.00 $0.00
PCB Prototyping Board Already Owned 1 $0.00 $0.00
Cable Sleeving Already Owned n/a $0.00 $0.00
Waterproof Junction Box Amazon 1 $9.99 $9.99
RGB LED MicroKit n/a $0.00 $0.00
Electrical Tape Already Owned n/a $0.00 $0.00
Total: 58 n/a $237.35

4 of 15

https://www.amazon.com/STEPPERONLINE-Pancake-Stepper-Bipolar-Extruder/dp/B0B93L4H57?th=1
https://www.amazon.com/Stepper-Printer-StepStick-Envistia-Mall/dp/B07QT7N3T2
https://www.adafruit.com/product/4469
https://www.amazon.com/dp/B0CPYGDY2F/
https://www.amazon.com/dp/B0CPYGDY2F/?_encoding=UTF8&pd_rd_i=B0CPYGDY2F&ref_=sbx_be_s_sparkle_ssd_img&qid=1739659162&pd_rd_w=awJj6&content-id=amzn1.sym.8591358d-1345-4efd-9d50-5bd4e69cd942%3Aamzn1.sym.8591358d-1345-4efd-9d50-5bd4e69cd942&pf_rd_p=8591358d-1345-4efd-9d50-5bd4e69cd942&pf_rd_r=MPM5A3EBKS3STAB66BX7&pd_rd_wg=OJzMF&pd_rd_r=98557a9d-0cd3-40aa-ad0e-547db1afcbf6&pd_rd_plhdr=t&th=1
https://www.amazon.com/IEIK-Adapter-Converter-Transformer-Computer/dp/B0839BTVBW
https://www.amazon.com/eSUN-Printing-Speedy-Filament-Printer/dp/B0D4TXJW68
https://www.amazon.com/Wal-front-Reduction-Diameter-Electric/dp/B07JLM9DSY
https://www.amazon.com/HiLetgo-KW12-3-Roller-Switch-Normally/dp/B07X142VGC
https://www.amazon.com/VictorsHome-Silicone-Flexible-Transfer-Transparent/dp/B09DKY23M8
https://www.amazon.com/Raculety-Junction-Waterproof-Electrical-200x120x75/dp/B0D5B7HL4Q

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual May 14 2025

Appendix B: CAD Design & Digital Twinning

Our entire assembly was designed and executed in Fusion360. Material properties (mass, density, length,
etc.) were derived from quantities as-described by our virtual twin.

B.1. Overall Turret Layout and Major Sub-Components

Custom Half-Gear
e

Polulu Transmission \ / _Arm Link

\ f | FunWee Firing Assembly I,' Turret Base

173.23

42*48 NEMA17

090 B

aman-

Negativa gecmety fram
reverss angineering Funiies Gur

@800~

BiEoO—Y ¥ /
I#,T X, 3000 P

162.28

e
y E— |_|.|Z.i.._.*

5o0f 15

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual May 14 2025

B.2. Transmission Close-Ups

From left to right, the firing transmission, wrist joint, and waist joint are displayed, each serving to control
the firing mechanism, pitch, and yaw, respectively.

B.3. FunWee Water Gun Internal Firing Assembly

The water-gun assembly was reverse engineered and cannabilized from an off-the-shelf toy water gun. This
is the digital twin we produced from that assembly.

Plunger Suppert Structire
+ Rack Gear Barre|

"Pusher” (See top view)

Nozihe

Counterweight Plunger

6 of 15

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual May 14 2025

B.4. Remote Control

Top Shell

Analog Stick

Wiring Clearance

’ (measured)
Limit Switch

‘ — Bottom Shell

Our CAD model incorporates reference geometries sourced from GrabCAD. The following attributions are
made to the original authors of the reference geometries used:

B.5. Attribution

e Ramirez Escobar, Aldahir. AMG8833. 27 Apr. 2020. GrabCAD. https://grabcad.com/library/
amg8833-2.

e Hentschke, Steve. N20 Mini Micro Metal Gear Motor with Encoder. 27 Oct. 2020. GrabCAD.
https://grabcad.com/library/n20-mini-micro-metal-gear-motor-with-encoder-1.

e Baylav, Barig. Keyes Joystick HW-504. 21 May 2020. GrabCAD. https://grabcad.com/library/
keyes-joystick-hw-504-1.

o Krymoff, Pavel. Microswitch MSW-13-17. 16 Mar. 2023. GrabCAD. https://grabcad.com/
library/microswitch-msw-13-17-1.

7of 15

https://grabcad.com/library/amg8833-2
https://grabcad.com/library/amg8833-2
https://grabcad.com/library/n20-mini-micro-metal-gear-motor-with-encoder-1
https://grabcad.com/library/keyes-joystick-hw-504-1
https://grabcad.com/library/keyes-joystick-hw-504-1
https://grabcad.com/library/microswitch-msw-13-17-1
https://grabcad.com/library/microswitch-msw-13-17-1

© 0w N o s W N =

L N N e e N ¥ R ¥ R R o s o v e e T
0o N O kA W N H O © 00 9 O Ok W N O © 00 9 O U Rk WN H O © 00 9 0 Uk W N = O

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual

May 14 2025

Appendix C: Code Implementation

C.1. Remote Control — Event-Driven Implementation

#include <esp_now.h>

#include <WiFi.h>

#include <Arduino.h>

#include <esp_timer.h> // ESP timer API for debounce

/] ===———- Pin definitions -------

const int JOYSTICK_SWITCH_PIN = 25; // Button pin
const int JOYSTICK_X_PIN = 36;

const int JOYSTICK_Y_PIN = 39;

const int LIMIT_SWITCH_PIN = 4;

const int LED_R_PIN = 7;

const int LED_G_PIN = 8;

const int LED_B_PIN = 21;

int ledState = 1; // Initial LED state

// ——————- Debounce Variables -------

volatile bool buttonIsPressed = false;

volatile bool DEBOUNCEflag = false;

const int debounceDelay = 200; // Debounce cooldown in ms
esp_timer_handle_t debounceTimer = NULL; // Timer handle

/] —————— Joystick calibration values -------
const int midX = 1840;
const int midY = 1800;
const int range = 2000;

/] —=——=—= ControllerMessage structure —-------
typedef struct __attribute__((packed)) {

int joyX;

int joyY;

bool trigger;
int ledState;
} ControllerMessage;

/] —=————= Turret MAC Address (for sending controller data) ----

uint8_t turretAddress[] = {0x0C, 0x8B, 0x95, 0x96, 0xB8, 0x64};

// ——=——— Function to update the RGB LED -------
void updateLED() {
digitalWrite(LED_R_PIN, ledState == 1 7 HIGH : LOW);
digitalWrite(LED_G_PIN, ledState == 2 7 HIGH : LOW);
digitalWrite(LED_B_PIN, ledState == 3 7 HIGH : LOW);
}

/] ——————= Timer Callback -- Called when debounce period expires

// The esp_timer callback clears the debounce flag so that new button presses are allowed.

8 of 15

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual May 14 2025

40 void IRAM_ATTR onTime(void#* arg) {

50 DEBOUNCEflag = false; // End cooldown period

51)

52

53 /) ——————- Button ISR using esp_timer for Debounce -------

54 // This ISR fires when the button press (FALLING edge) is detected.

55 // If not in a debounce period, it sets the button event flag and starts the debounce timer.
56 void IRAM_ATTR isr() {

57 if (!DEBOUNCEflag) {

58 buttonIsPressed = true; // Flag a valid press

59 DEBOUNCEflag = true; // Begin debounce cooldown

60 // Start the one-shot timer: debounceDelay in ms (converted to microseconds)
61 esp_timer_start_once(debounceTimer, debounceDelay * 1000);

62 }

63

64

65 // ——————= Event Checker Function -------

66 // Returns true if a button press was detected and the debounce period has expired.
67 bool CheckForButtonPress() {

68 return buttonIsPressed && !'DEBOUNCEflag;

69 F

70

o /) = Service Function for Button Event -------

72 // Handles the button press event by toggling the LED state and resetting the flag.
73 void ButtonResponse() {

74 buttonIsPressed = false; // Clear the press flag

75 ledState = (ledState 7% 3) + 1; // Cycle through LED states 1-3

76 updateLED() ;

77 Serial.println("Button Press Handled: LED toggled.");

78}

79

so /) ——————= Global variables to store previous state for change detection ————---
81 int prevJoyX = O;

g2 int prevJoyY = O;

83 int prevLED = 0;

84 int prevTrigger = -1; // Initialized to a value that won't equal digitalRead
85

s6 /) ————- Thermal Camera Reception Variables -----

g7 #define TOTAL_PIXELS 768

g8 #define CHUNK_SIZE 60

89 #define TOTAL_CHUNKS ((TOTAL_PIXELS + CHUNK_SIZE - 1) / CHUNK_SIZE)

90

91 float frame[TOTAL_PIXELS];

92 bool receivedChunks[TOTAL_CHUNKS] = {0};

93 uint8_t receivedCount = 0;

94

95 #pragma pack(push, 1)

96 typedef struct {

97 uint8_t chunkIndex;

98 uint8_t totalChunks;

99 float chunkData[CHUNK_SIZE];

100 } FrameChunk;

101 #pragma pack(pop)

9 of 15

102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual May 14 2025
/] ——————= ESP-NOW Receive Callback for Thermal Camera Data -------
void OnDataRecv(const esp_now_recv_info_t *info, const uint8_t *data, int len) {

if (len != sizeof (FrameChunk)) return; // Ignore messages that don't match the expected frame

— chunk size

FrameChunk chunk;
memcpy (&chunk, data, sizeof (FrameChunk));

uintl16_t offset = chunk.chunkIndex * CHUNK_SIZE;
uint8_t actualSize = min(CHUNK_SIZE, TOTAL_PIXELS - offset);
memcpy (&frame [offset], chunk.chunkData, actualSize * sizeof(float));

if (!receivedChunks [chunk.chunkIndex]) {
receivedChunks [chunk.chunkIndex] = true;
receivedCount++;

}

if (receivedCount == TOTAL_CHUNKS) {
Serial.println("FRAME_START");
for (int i = 0; i < TOTAL_PIXELS; i++) {
Serial.print(frame[i], 1);
Serial.print(" ");
if ((1 + 1) % 32 == 0) Serial.println();
}
Serial.println("FRAME_END");
memset (receivedChunks, 0, sizeof (receivedChunks));
receivedCount = 0;
}
}

void setup() {
Serial.begin(115200) ;

// Setup pin modes:

pinMode (JOYSTICK_SWITCH_PIN, INPUT_PULLUP);
pinMode (JOYSTICK_X_PIN, INPUT);

pinMode (JOYSTICK_Y_PIN, INPUT);

pinMode (LIMIT_SWITCH_PIN, INPUT_PULLUP);

pinMode (LED_R_PIN, OUTPUT);
pinMode (LED_G_PIN, OUTPUT);
pinMode (LED_B_PIN, OUTPUT);

updateLED() ;

// Initialize WiFi and ESP-NOW:
WiFi.mode (WIFI_STA);
Serial.println("Controller ESP32 Ready");

if (esp_now_init() != ESP_OK) {
Serial.println(" ESP-NOW Init Failed");
return;

10 of 15

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual May 14 2025

}

// Add peer for turret (for sending controller messages)
esp_now_peer_info_t peerInfo = {};
memcpy (peerInfo.peer_addr, turretAddress, 6);
peerInfo.channel = O;
peerInfo.encrypt = false;
if (esp_now_add_peer(&peerInfo) != ESP_0K) {
Serial.println(" Failed to add turret peer");
return;

3

// Register receive callback for thermal camera frame chunks
esp_now_register_recv_cb(OnDataRecv) ;

// Create the ESP timer for debounce functionality.
esp_timer_create_args_t debounceTimerArgs = {
.callback = onTime,

.arg = NULL,
.dispatch_method = ESP_TIMER_TASK, // Execute the callback in the timer task context
.name = "debounceTimer"

};

esp_timer_create(&debounceTimerArgs, &debounceTimer);

// Attach the external interrupt to the joystick button pin.
// With INPUT_PULLUP, a button press brings the pin from HIGH to LOW (FALLING edge).
attachInterrupt(digitalPinToInterrupt (JOYSTICK_SWITCH_PIN), isr, FALLING);

}

void loop() {
// Process button events using the event-driven approach.
if (CheckForButtonPress()) {
ButtonResponse() ;

}

// Process joystick readings:
int rawX = analogRead(JOYSTICK_X_PIN) - midX;
int rawY = analogRead(JOYSTICK_Y_PIN) - midY;

// Map the raw values to a range of -1000 to +1000.
int joyX = map(ran, -1840, 2255, -1000, 1000);
int joyY = map(rawY, -1800, 2295, -1000, 1000);

// Apply deadzone filtering.
const int deadzone = 150;

if (abs(joyX) < deadzone) joyX
if (abs(joyY) < deadzone) joyY

0;
0;

// Read the limit switch (trigger) state.
int triggerState = digitalRead(LIMIT_SWITCH_PIN);

// Pack the joystick and button info into the message structure.
ControllerMessage msg;

11 of 15

207
208
209
210
211
212
213
214
215
216
217
218
219

© 0 N O oA W N

W W W W W W N NN NN NN NN R e e e e e e e
Gk W N E O O N0 U R W E O © N U R W N = O

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual

May 14 2025

msg.joyX = joyX;

msg.joyY = joyY;

msg.trigger = (triggerState == LOW);
msg.ledState = ledState;

// Send the controller message via ESP-NOW.

esp_err_t result = esp_now_send(turretAddress, (uint8_t *)&msg, sizeof (msg));

if (result != ESP_OK) {
Serial.printf(" Failed to send message: %d\n", result);

3

delay(50);

C.2. Water Turret — Event-Driven Implementation

#include <esp_now.h>

#include <WiFi.h>

#include <Wire.h>

#include <Adafruit_MLX90640.h>
#include <math.h>

#define TOTAL_PIXELS 768
#define CHUNK_SIZE 60
#define TOTAL_CHUNKS ((TOTAL_PIXELS + CHUNK_SIZE - 1) / CHUNK_SIZE)

// Motor control pin definitions

#define BIN_1 4 // PWM control for motor (clockwise)

#define BIN_2 5 // Direction control, kept LOW for clockwise rotation
#define LED_PIN 13 // LED indicator pin

#define ENCODER_A 12 // Encoder channel A

#define ENCODER_B 27 // Encoder channel B

// Encoder and motor control

volatile int cumulative_ticks = 0;
volatile bool revolution_complete = false;
const int encoder_target = 105;

const int pwmFreq = 1000;

const int pwmResolution = 8;

// Trigger control tracking
bool prevIriggerState = false; // Stores last known trigger state

void IRAM_ATTR encoderISR() {
cumulative_ticks++;
if (cumulative_ticks >= encoder_target) {
revolution_complete = true;
}
}

// Convert percent to 8-bit duty cycle

12 of 15

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81

82
83
84
85
86
87

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual May 14 2025

int duty_u8(int percentage) {
return int(percentage / 100.0 * ((1 << pwmResolution) - 1));
}

Adafruit_MLX90640 mlx;
float frame[TOTAL_PIXELS];

/] ————= Controller (Joystick) Message Definition -----
#pragma pack(push, 1)
typedef struct __attribute__((packed)) {
int joyX;
int joyY;
bool trigger;
int ledState;
} ControllerMessage;
#pragma pack(pop)

ControllerMessage ctrlMsg = {}; // Global instance of ControllerlMessage

/] === Target Address for Sending Thermal Data -----

// In this configuration the turret sends its thermal data to the controller.
// (Replace with the actual MAC if needed.)

uint8_t controllerAddress[] = { 0xE8, 0x9F, 0x6D, 0x2F, 0x91, 0x60 };

/] ———- Variables for ESP-NOW Send Status —-----
volatile bool canSend = true, lastSendSuccessful = true;

// ————= Frame Chunk Definition -----
#pragma pack(push, 1)
typedef struct {
uint8_t chunkIndex;
uint8_t totalChunks;
float chunkData[CHUNK_SIZE];
} FrameChunk;
#pragma pack(pop)

// ————- ESP-NOW Send Callback --—-—-

// Called after a thermal frame chunk is sent.

void OnDataSent(const uint8_t *mac, esp_now_send_status_t status) {
canSend = true;
lastSendSuccessful = (status == ESP_NOW_SEND_SUCCESS) ;

}

/] === ESP-NOW Receive Callback —-----
// This callback is triggered when any ESP-NOW data is received.

// It now uses the corrected signature to match: (const esp_now_recv_info_t*, const uint8_t*,

— int).
void OnDataRecv(const esp_now_recv_info_t *info, const uint8_t *data, int len) {
if (len == sizeof(ControllerMessage)) {

memcpy (&ctrlMsg, data, sizeof(ControllerMessage));
Serial.printf ("Joystick Command Received - X: %d, Y: %d, Trigger: ’%d, LED: %d\n",
ctrlMsg. joyX, ctrlMsg.joyY, ctrlMsg.trigger, ctrlMsg.ledState);

13 of 15

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Group 8 MECENG 102B: 7Ro-BOT Final Report & Manual

May 14 2025

//

————— Function to Send Thermal Camera Frame Chunks —---—-

// The frame is split into chunks and each chunk is sent via ESP-NOW.
void sendFrameChunks() {

}

for (uint8_t i = 0; i < TOTAL_CHUNKS; i++) {
FrameChunk *chunk = (FrameChunk *)malloc(sizeof (FrameChunk)) ;
if (!'chunk) return;

chunk->chunkIndex = i;

chunk->totalChunks = TOTAL_CHUNKS;

uintl16_t offset = i * CHUNK_SIZE;

uint8_t actualSize = min(CHUNK_SIZE, TOTAL_PIXELS - offset);

memcpy (chunk->chunkData, &frame[offset], actualSize * sizeof(float));

canSend = false;
esp_now_send(controllerAddress, (uint8_t *)chunk, sizeof (FrameChunk));

// Wait until sending completes or timeout.
uint32_t timeout = millis() + 100;
while (!canSend && millis() < timeout) delay(1);

free(chunk) ;
delay(5); // pacing between chunks
}

void setup() {

Serial.begin(115200) ;
WiFi.mode (WIFI_STA);

// Initialize ESP-NOW and register callbacks.

if (esp_now_init() !'= ESP_0K) {
Serial.println(" ESP-NOW Init Failed");
return;

X

esp_now_register_send_cb(OnDataSent) ;

esp_now_register_recv_cb(OnDataRecv) ;

// Setup peer to transmit thermal data to the controller.

esp_now_peer_info_t peerInfo = {};

memcpy (peerInfo.peer_addr, controllerAddress, 6);

peerInfo.channel = O;

peerInfo.encrypt = false;

if (esp_now_add_peer(&peerInfo) != ESP_0K) {
Serial.println(" Failed to add controller peer");
return;

3

// Initialize I2C (Wire) for MLX90640.
Wire.begin(22, 20); // Adjust pins as required
Wire.setClock(400000) ;

if (!mlx.begin(0x33, &Wire)) {

14 of 15

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

Group 8

MECENG 102B: 7Ro-BOT Final Report & Manual

May 14 2025

Serial.pri

while (1)
¥
mlx.setMode(
mlx.setRefre

Serial.print

//Small Moto
pinMode (BIN_
pinMode (BIN_
pinMode (LED_
digitalWrite
if (!ledcAtt
Serial.pri
}
pinMode (ENCO
pinMode (ENCO
}

void loop() {
// Read a fr

ntln(" MLX90640 not found");
delay(10);

MLX90640_CHESS) ;
shRate (MLX90640_8_HZ) ;

In(" Turret Ready");

r Spin

1, OUTPUT);

2, OUTPUT);

PIN, QUTPUT);

(BIN_2, LOW);

ach(BIN_1, pwmFreq, pwmResolution)) {

ntln("Error: ledcAttach failed to configure the LEDC pin!");

DER_A, INPUT);
DER_B, INPUT);

ame from the thermal camera.

if (mlx.getFrame(frame) == 0) {
sendFrameChunks () ;

} else {

Serial.println(" Frame read failed");

}
delay(150) ;

//Motor Spin
// Detect ri

// Control the rate of frame transmission

sing edge of trigger (0 -> 1)

if (ctrlMsg.trigger && !prevIriggerState) {
Serial.println("Trigger received. Starting motor...");

cumulative
revolution

_ticks = 0;
_complete = false;

digitalWrite (LED_PIN, LOW);

attachInte

rrupt(digitalPinToInterrupt (ENCODER_A), encoderISR, RISING);

ledcWrite(BIN_1, duty_u8(20));

}

if (revoluti

on_complete) {

ledcWrite(BIN_1, 0);

detachInte

rrupt(digitalPinToInterrupt (ENCODER_A)) ;

digitalWrite (LED_PIN, HIGH);

//Serial.p
//Serial.p

rint ("Revolution complete! Total ticks: ");
rintln(cumulative_ticks);

prevIriggerState = ctrlMsg.trigger;

delay(10);

// Small delay to prevent CPU hog

15 of 15

	Opportunity
	High-Level Strategy and Functional Outcomes
	Integrated Device Overview
	Function-Critical Decisions and Calculations
	Wrist and Waist Motors: NEMA17
	Firing Transmission: Polulu Motor
	Material Choice: PLA and Metal

	Finalized Diagrams
	Circuit Diagrams

	Reflections and Recommendations
	Bill of Materials
	CAD Design & Digital Twinning
	Overall Turret Layout and Major Sub-Components
	Transmission Close-Ups
	FunWee Water Gun Internal Firing Assembly
	Remote Control
	Attribution

	Code Implementation
	Remote Control – Event-Driven Implementation
	Water Turret – Event-Driven Implementation

