
Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

By: Menooa Avrand, Eyan Documet, James Gotesky, Rafael Petrosian

1. Opportunity

“For firefighters or power companies who are oper-
ating in hazardous and/or remote fire conditions, its
an autonomous cobot that extinguishes small fires via
manual or autonomous operation; it can also be used
to execute a preventive application of retardant.”

2. High-Level Strategy and Functional
Outcomes

πRo-BOT is a 2.5DoF robotic water gun intended for
autonomous detection and extinguishing of flames,
namely in remote and/or dangerous environments.
It operates under the following strategy:

1. The turret enters a passive patrol mode, au-
tonomously sweeping its field of view using an
IR camera to monitor for thermal anomalies.

2. The IR camera, interfaced via an ESP32, de-
tects elevated thermal signatures indicative of
potential fire sources and computes their tra-
jectories in real time.

3. Upon detection of a thermal threat, the sys-
tem engages fire retardant mechanisms, actu-
ating suppression until the thermal signature
subsides below a safe threshold.

A manual override capability is provided for human
operators to directly control detection or suppres-
sion systems as needed–this is controlled remotely
by a wireless controller. Furthermore, a preventa-
tive regime allows scheduled applications in high-risk
zones, where an agency can have πRo apply retar-
dant in a pre-described pattern.

In our original proposal, we stated the following
goals:

1. Accurate and precise firing of a stream of water
up to a distance of 6 meters

2. Fully functional automatic and manual
regimes

3. Automated detection of sources of heat, posi-
tioning, and firing until extinguished.

4. Seamless transition to manual input, allowing
for natural control.

Due to limitations in the resolution of the Ther-
mal camera we selected, our autonomous mode is
only able to accomplish automatic extinguishing at
roughly 1/2 our goal. However, in manual mode, the
range we set out to achieve is possible with a skilled
operator.

3. Integrated Device Overview

Figure 1: Our fully-assembled device, with compo-
nents labeled.

1 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

The device has two joints and a transmission: joint
A (“waist”/yaw), joint B (“wrist”/pitch), and trans-
mission C (firing state), giving πRo-BOT 2.5 degrees
of freedom.

4. Function-Critical Decisions and Calcu-
lations

4.1. Wrist and Waist Motors: NEMA17

When designing our robotic transmission, our group
spent significant time debating using Servo Motors
or Stepper motors. Ultimately we opted to use
NEMA17 stepper motors for the following rea-
sons:

• Stepper motors offer the flexibility of continu-
ous rotation, which is not possible with servo
motors.

• The compliance of stepper motors creates an
inherent safety-factor when dealing with hu-
man operators.

We verified our choice under the following hand-
calculations:

• Holding torque (specs): τmax = 55N cm
• Axial load rading (specs): Pmax = 10N
• Max. applied torque (CAD): τ = 41.15mm ·
21N ≈ 8.64N cm ≤ τmax

• Max. axial load (CAD): P = 0.667 kg ·
9.81m/s2 ≈ 6.54N ≤ Pmax

Since both our maximum axial load and torque are
significantly less then what’s rated on the 42*48
NEMA17’s spec-sheet (Stepper Motor Online), we
know it’s safe to use these motors for our applica-
tion. Motor speed was not considered, as our device
focuses more on precision that rapidity.

4.2. Firing Transmission: Polulu Motor

For our firing mechanism, we had to chose a mo-
tor that could deliver the very high torque the orig-
inal FunWee gun delivered via its gear reduction.
We also wanted to implement a design with a much
smaller volume, meaning we had to use a direct-drive
solution. For this case, the Polulu 298:1 Gear-
Reduction Motor was an obvious choice.

• A gear reduction is built-in to the motor in an
extremely consise volume, allowing very sim-
ple design and integration to FunWee’s Firing
Assembly.

• Sans encoder, the Polulu motor was notably
easy to integrate into our circuitry; using a
MOSFET as a “driver,” we’re able to power
the smaller motor using the same input as our
Wrist and Waist.

The rack and pinion on the off-the-shelf water gun
was operated using a 3.7V toy motor, with a likely
maximum radial load rating of 20.00Nmm. Al-
though we did not characterize our spring stiffness
in order to calculate the radial load, compared to an
average 3.7V toy motor, our motor is capable of cre-
ating the necessary drive to move the rack and pin-
ion. Our 298:1 has a maximum load (at ˜60 RPM)
of 196.2Nmm (Polulu).

4.3. Material Choice: PLA and Metal

We selected PLA for structural parts to enable rapid,
low-cost 3D printing during iteration. Primitive
strength testing (trying to break some test pieces
with our bare hands) showed suprising reliability
when printed at approx. 15% 3D honeycomb infill.

We used metal flanged shaft couplers to maintain
metal-metal contacts between our NEMA17s and
our robotic segments.

5. Finalized Diagrams

5.1. Circuit Diagrams

Figure 2: Wiring diagram for the remote controller.

2 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

Figure 3: Wiring diagram for the water gun.

Figure 4: State-transition diagram of the turret.

Figure 5: State-transition diagram of the remote
control.

6. Reflections and Recommendations

If we had an opportunity to continue development
(or start over), it would be interesting to try imple-
menting a WIFI-based solution for the remote con-
trol aspect of our project. In practice, we’d like the
πRo-BOT to be operated remotely from anywhere
in the world, as our project goals state it’s intended
for remote and/or dangerous areas.

For future students, we strongly recommend using
off-the-shelf components where possible to avoid “re-
inventing the wheel”–this was a significant boon for
our team. Dividing labor where possible is also help-
ful, as long as team-wide syncs are frequent.

Reflecting on our project outcomes, our team is
highly satisfied with the final implementation of
πRo-BOT. We successfully achieved all core objec-
tives in a robust and sleek system while meeting all
major course requirements.

3 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

Appendix A: Bill of Materials

Item Name Source Quantity Unit Price Total Cost

Nema 17 Stepper Motor Amazon 2 $10.99 $21.98
A4988 Stepper Motor Driver (2pc) Amazon 2 $3.80 $7.60
MLX90640 24x32 Thermal Cam Adafruit 1 $74.95 $74.95
Adafruit ESP32 MicroKit 2 $0.00 $0.00
Electric Water Gun Amazon 1 $35.99 $35.99
5mm Coupling Shafts Amazon 1 $7.99 $7.99
Power Supply Adapter Amazon 1 $13.99 $13.99
MOSFET Transistor ME102B Lab Room 1 $0.00 $0.00
Capacitor (220µF) ME102B Lab Room 1 $0.00 $0.00
PLA Filament (2pak) Amazon 1 $22.98 $22.98
281:1 Micro Metal Gearmotor HP 6V Amazon 1 $8.91 $8.91
Dual Axis Joystick Module Already Owned 1 $0.00 $0.00
Limit Switch Amazon 1 $5.99 $5.99
M3 Plain Washers Ace Hardware 8 $0.10 $0.80
M3x0.5 Hex-Head Nuts Ace Hardware 8 $0.35 $2.80
M3x0.5x16 Hex Bolts Ace Hardware 4 $0.85 $3.40
M3x0.5x30 Hex Bolts Ace Hardware 4 $0.85 $3.40
M3x0.5x10 Hex Bolts Ace Hardware 4 $0.85 $3.40
M3x0.5x4 Hex Bolts Ace Hardware 4 $0.85 $3.40
M2x0.4x12 Hex Bolt Ace Hardware 1 $0.10 $0.10
M2x0.4 Hex-Head Nut Ace Hardware 1 $0.10 $0.10
Wiring (Various) ME102B Lab Room n/a $0.00 $0.00
Polyethylene Tubing Amazon 1 $9.58 $9.58
1 Gallon Water Jug Already Owned 1 $0.00 $0.00
Zip Ties (Various) Already Owned n/a $0.00 $0.00
USB Type-C Cable Already Owned 2 $0.00 $0.00
Breadboard (Various Sizes) Already Owned 2 $0.00 $0.00
PCB Prototyping Board Already Owned 1 $0.00 $0.00
Cable Sleeving Already Owned n/a $0.00 $0.00
Waterproof Junction Box Amazon 1 $9.99 $9.99
RGB LED MicroKit n/a $0.00 $0.00
Electrical Tape Already Owned n/a $0.00 $0.00
Total: 58 n/a $237.35

4 of 15

https://www.amazon.com/STEPPERONLINE-Pancake-Stepper-Bipolar-Extruder/dp/B0B93L4H57?th=1
https://www.amazon.com/Stepper-Printer-StepStick-Envistia-Mall/dp/B07QT7N3T2
https://www.adafruit.com/product/4469
https://www.amazon.com/dp/B0CPYGDY2F/
https://www.amazon.com/dp/B0CPYGDY2F/?_encoding=UTF8&pd_rd_i=B0CPYGDY2F&ref_=sbx_be_s_sparkle_ssd_img&qid=1739659162&pd_rd_w=awJj6&content-id=amzn1.sym.8591358d-1345-4efd-9d50-5bd4e69cd942%3Aamzn1.sym.8591358d-1345-4efd-9d50-5bd4e69cd942&pf_rd_p=8591358d-1345-4efd-9d50-5bd4e69cd942&pf_rd_r=MPM5A3EBKS3STAB66BX7&pd_rd_wg=OJzMF&pd_rd_r=98557a9d-0cd3-40aa-ad0e-547db1afcbf6&pd_rd_plhdr=t&th=1
https://www.amazon.com/IEIK-Adapter-Converter-Transformer-Computer/dp/B0839BTVBW
https://www.amazon.com/eSUN-Printing-Speedy-Filament-Printer/dp/B0D4TXJW68
https://www.amazon.com/Wal-front-Reduction-Diameter-Electric/dp/B07JLM9DSY
https://www.amazon.com/HiLetgo-KW12-3-Roller-Switch-Normally/dp/B07X142VGC
https://www.amazon.com/VictorsHome-Silicone-Flexible-Transfer-Transparent/dp/B09DKY23M8
https://www.amazon.com/Raculety-Junction-Waterproof-Electrical-200x120x75/dp/B0D5B7HL4Q

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

Appendix B: CAD Design & Digital Twinning

Our entire assembly was designed and executed in Fusion360. Material properties (mass, density, length,
etc.) were derived from quantities as-described by our virtual twin.

B.1. Overall Turret Layout and Major Sub-Components

5 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

B.2. Transmission Close-Ups

From left to right, the firing transmission, wrist joint, and waist joint are displayed, each serving to control
the firing mechanism, pitch, and yaw, respectively.

B.3. FunWee Water Gun Internal Firing Assembly

The water-gun assembly was reverse engineered and cannabilized from an off-the-shelf toy water gun. This
is the digital twin we produced from that assembly.

6 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

B.4. Remote Control

B.5. Attribution

Our CAD model incorporates reference geometries sourced from GrabCAD. The following attributions are
made to the original authors of the reference geometries used:

• Ramirez Escobar, Aldahir. AMG8833. 27 Apr. 2020. GrabCAD. https://grabcad.com/library/
amg8833-2.

• Hentschke, Steve. N20 Mini Micro Metal Gear Motor with Encoder. 27 Oct. 2020. GrabCAD.
https://grabcad.com/library/n20-mini-micro-metal-gear-motor-with-encoder-1.

• Baylav, Barış. Keyes Joystick HW-504. 21 May 2020. GrabCAD. https://grabcad.com/library/
keyes-joystick-hw-504-1.

• Krymoff, Pavel. Microswitch MSW-13-17. 16 Mar. 2023. GrabCAD. https://grabcad.com/
library/microswitch-msw-13-17-1.

7 of 15

https://grabcad.com/library/amg8833-2
https://grabcad.com/library/amg8833-2
https://grabcad.com/library/n20-mini-micro-metal-gear-motor-with-encoder-1
https://grabcad.com/library/keyes-joystick-hw-504-1
https://grabcad.com/library/keyes-joystick-hw-504-1
https://grabcad.com/library/microswitch-msw-13-17-1
https://grabcad.com/library/microswitch-msw-13-17-1

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

Appendix C: Code Implementation

C.1. Remote Control – Event-Driven Implementation

1 #include <esp_now.h>

2 #include <WiFi.h>

3 #include <Arduino.h>

4 #include <esp_timer.h> // ESP timer API for debounce

5

6 // ------- Pin definitions -------

7 const int JOYSTICK_SWITCH_PIN = 25; // Button pin

8 const int JOYSTICK_X_PIN = 36;

9 const int JOYSTICK_Y_PIN = 39;

10 const int LIMIT_SWITCH_PIN = 4;

11

12 const int LED_R_PIN = 7;

13 const int LED_G_PIN = 8;

14 const int LED_B_PIN = 21;

15

16 int ledState = 1; // Initial LED state

17

18 // ------- Debounce Variables -------

19 volatile bool buttonIsPressed = false;

20 volatile bool DEBOUNCEflag = false;

21 const int debounceDelay = 200; // Debounce cooldown in ms

22 esp_timer_handle_t debounceTimer = NULL; // Timer handle

23

24 // ------- Joystick calibration values -------

25 const int midX = 1840;

26 const int midY = 1800;

27 const int range = 2000;

28

29 // ------- ControllerMessage structure -------

30 typedef struct __attribute__((packed)) {

31 int joyX;

32 int joyY;

33 bool trigger;

34 int ledState;

35 } ControllerMessage;

36

37 // ------- Turret MAC Address (for sending controller data) -------

38 uint8_t turretAddress[] = {0x0C, 0x8B, 0x95, 0x96, 0xB8, 0x64};

39

40 // ------- Function to update the RGB LED -------

41 void updateLED() {

42 digitalWrite(LED_R_PIN, ledState == 1 ? HIGH : LOW);

43 digitalWrite(LED_G_PIN, ledState == 2 ? HIGH : LOW);

44 digitalWrite(LED_B_PIN, ledState == 3 ? HIGH : LOW);

45 }

46

47 // ------- Timer Callback -- Called when debounce period expires -------

48 // The esp_timer callback clears the debounce flag so that new button presses are allowed.

8 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

49 void IRAM_ATTR onTime(void* arg) {

50 DEBOUNCEflag = false; // End cooldown period

51 }

52

53 // ------- Button ISR using esp_timer for Debounce -------

54 // This ISR fires when the button press (FALLING edge) is detected.

55 // If not in a debounce period, it sets the button event flag and starts the debounce timer.

56 void IRAM_ATTR isr() {

57 if (!DEBOUNCEflag) {

58 buttonIsPressed = true; // Flag a valid press

59 DEBOUNCEflag = true; // Begin debounce cooldown

60 // Start the one-shot timer: debounceDelay in ms (converted to microseconds)

61 esp_timer_start_once(debounceTimer, debounceDelay * 1000);

62 }

63 }

64

65 // ------- Event Checker Function -------

66 // Returns true if a button press was detected and the debounce period has expired.

67 bool CheckForButtonPress() {

68 return buttonIsPressed && !DEBOUNCEflag;

69 }

70

71 // ------- Service Function for Button Event -------

72 // Handles the button press event by toggling the LED state and resetting the flag.

73 void ButtonResponse() {

74 buttonIsPressed = false; // Clear the press flag

75 ledState = (ledState % 3) + 1; // Cycle through LED states 1-3

76 updateLED();

77 Serial.println("Button Press Handled: LED toggled.");

78 }

79

80 // ------- Global variables to store previous state for change detection -------

81 int prevJoyX = 0;

82 int prevJoyY = 0;

83 int prevLED = 0;

84 int prevTrigger = -1; // Initialized to a value that won't equal digitalRead

85

86 // ----- Thermal Camera Reception Variables -----

87 #define TOTAL_PIXELS 768

88 #define CHUNK_SIZE 60

89 #define TOTAL_CHUNKS ((TOTAL_PIXELS + CHUNK_SIZE - 1) / CHUNK_SIZE)

90

91 float frame[TOTAL_PIXELS];

92 bool receivedChunks[TOTAL_CHUNKS] = {0};

93 uint8_t receivedCount = 0;

94

95 #pragma pack(push, 1)

96 typedef struct {

97 uint8_t chunkIndex;

98 uint8_t totalChunks;

99 float chunkData[CHUNK_SIZE];

100 } FrameChunk;

101 #pragma pack(pop)

9 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

102

103 // ------- ESP-NOW Receive Callback for Thermal Camera Data -------

104 void OnDataRecv(const esp_now_recv_info_t *info, const uint8_t *data, int len) {

105 if (len != sizeof(FrameChunk)) return; // Ignore messages that don't match the expected frame

chunk size↪→

106

107 FrameChunk chunk;

108 memcpy(&chunk, data, sizeof(FrameChunk));

109

110 uint16_t offset = chunk.chunkIndex * CHUNK_SIZE;

111 uint8_t actualSize = min(CHUNK_SIZE, TOTAL_PIXELS - offset);

112 memcpy(&frame[offset], chunk.chunkData, actualSize * sizeof(float));

113

114 if (!receivedChunks[chunk.chunkIndex]) {

115 receivedChunks[chunk.chunkIndex] = true;

116 receivedCount++;

117 }

118

119 if (receivedCount == TOTAL_CHUNKS) {

120 Serial.println("FRAME_START");

121 for (int i = 0; i < TOTAL_PIXELS; i++) {

122 Serial.print(frame[i], 1);

123 Serial.print(" ");

124 if ((i + 1) % 32 == 0) Serial.println();

125 }

126 Serial.println("FRAME_END");

127 memset(receivedChunks, 0, sizeof(receivedChunks));

128 receivedCount = 0;

129 }

130 }

131

132 void setup() {

133 Serial.begin(115200);

134

135 // Setup pin modes:

136 pinMode(JOYSTICK_SWITCH_PIN, INPUT_PULLUP);

137 pinMode(JOYSTICK_X_PIN, INPUT);

138 pinMode(JOYSTICK_Y_PIN, INPUT);

139 pinMode(LIMIT_SWITCH_PIN, INPUT_PULLUP);

140

141 pinMode(LED_R_PIN, OUTPUT);

142 pinMode(LED_G_PIN, OUTPUT);

143 pinMode(LED_B_PIN, OUTPUT);

144

145 updateLED();

146

147 // Initialize WiFi and ESP-NOW:

148 WiFi.mode(WIFI_STA);

149 Serial.println("Controller ESP32 Ready");

150

151 if (esp_now_init() != ESP_OK) {

152 Serial.println(" ESP-NOW Init Failed");

153 return;

10 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

154 }

155

156 // Add peer for turret (for sending controller messages)

157 esp_now_peer_info_t peerInfo = {};

158 memcpy(peerInfo.peer_addr, turretAddress, 6);

159 peerInfo.channel = 0;

160 peerInfo.encrypt = false;

161 if (esp_now_add_peer(&peerInfo) != ESP_OK) {

162 Serial.println(" Failed to add turret peer");

163 return;

164 }

165

166 // Register receive callback for thermal camera frame chunks

167 esp_now_register_recv_cb(OnDataRecv);

168

169 // Create the ESP timer for debounce functionality.

170 esp_timer_create_args_t debounceTimerArgs = {

171 .callback = onTime,

172 .arg = NULL,

173 .dispatch_method = ESP_TIMER_TASK, // Execute the callback in the timer task context

174 .name = "debounceTimer"

175 };

176 esp_timer_create(&debounceTimerArgs, &debounceTimer);

177

178 // Attach the external interrupt to the joystick button pin.

179 // With INPUT_PULLUP, a button press brings the pin from HIGH to LOW (FALLING edge).

180 attachInterrupt(digitalPinToInterrupt(JOYSTICK_SWITCH_PIN), isr, FALLING);

181 }

182

183 void loop() {

184 // Process button events using the event-driven approach.

185 if (CheckForButtonPress()) {

186 ButtonResponse();

187 }

188

189 // Process joystick readings:

190 int rawX = analogRead(JOYSTICK_X_PIN) - midX;

191 int rawY = analogRead(JOYSTICK_Y_PIN) - midY;

192

193 // Map the raw values to a range of -1000 to +1000.

194 int joyX = map(rawX, -1840, 2255, -1000, 1000);

195 int joyY = map(rawY, -1800, 2295, -1000, 1000);

196

197 // Apply deadzone filtering.

198 const int deadzone = 150;

199 if (abs(joyX) < deadzone) joyX = 0;

200 if (abs(joyY) < deadzone) joyY = 0;

201

202 // Read the limit switch (trigger) state.

203 int triggerState = digitalRead(LIMIT_SWITCH_PIN);

204

205 // Pack the joystick and button info into the message structure.

206 ControllerMessage msg;

11 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

207 msg.joyX = joyX;

208 msg.joyY = joyY;

209 msg.trigger = (triggerState == LOW);

210 msg.ledState = ledState;

211

212 // Send the controller message via ESP-NOW.

213 esp_err_t result = esp_now_send(turretAddress, (uint8_t *)&msg, sizeof(msg));

214 if (result != ESP_OK) {

215 Serial.printf(" Failed to send message: %d\n", result);

216 }

217

218 delay(50);

219 }

C.2. Water Turret – Event-Driven Implementation

1 #include <esp_now.h>

2 #include <WiFi.h>

3 #include <Wire.h>

4 #include <Adafruit_MLX90640.h>

5 #include <math.h>

6

7 #define TOTAL_PIXELS 768

8 #define CHUNK_SIZE 60

9 #define TOTAL_CHUNKS ((TOTAL_PIXELS + CHUNK_SIZE - 1) / CHUNK_SIZE)

10

11 // Motor control pin definitions

12 #define BIN_1 4 // PWM control for motor (clockwise)

13 #define BIN_2 5 // Direction control, kept LOW for clockwise rotation

14 #define LED_PIN 13 // LED indicator pin

15 #define ENCODER_A 12 // Encoder channel A

16 #define ENCODER_B 27 // Encoder channel B

17

18 // Encoder and motor control

19 volatile int cumulative_ticks = 0;

20 volatile bool revolution_complete = false;

21 const int encoder_target = 105;

22 const int pwmFreq = 1000;

23 const int pwmResolution = 8;

24

25 // Trigger control tracking

26 bool prevTriggerState = false; // Stores last known trigger state

27

28 void IRAM_ATTR encoderISR() {

29 cumulative_ticks++;

30 if (cumulative_ticks >= encoder_target) {

31 revolution_complete = true;

32 }

33 }

34

35 // Convert percent to 8-bit duty cycle

12 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

36 int duty_u8(int percentage) {

37 return int(percentage / 100.0 * ((1 << pwmResolution) - 1));

38 }

39

40 Adafruit_MLX90640 mlx;

41 float frame[TOTAL_PIXELS];

42

43 // ----- Controller (Joystick) Message Definition -----

44 #pragma pack(push, 1)

45 typedef struct __attribute__((packed)) {

46 int joyX;

47 int joyY;

48 bool trigger;

49 int ledState;

50 } ControllerMessage;

51 #pragma pack(pop)

52

53 ControllerMessage ctrlMsg = {}; // Global instance of ControllerMessage

54

55 // ----- Target Address for Sending Thermal Data -----

56 // In this configuration the turret sends its thermal data to the controller.

57 // (Replace with the actual MAC if needed.)

58 uint8_t controllerAddress[] = { 0xE8, 0x9F, 0x6D, 0x2F, 0x91, 0x60 };

59

60 // ----- Variables for ESP-NOW Send Status -----

61 volatile bool canSend = true, lastSendSuccessful = true;

62

63 // ----- Frame Chunk Definition -----

64 #pragma pack(push, 1)

65 typedef struct {

66 uint8_t chunkIndex;

67 uint8_t totalChunks;

68 float chunkData[CHUNK_SIZE];

69 } FrameChunk;

70 #pragma pack(pop)

71

72 // ----- ESP-NOW Send Callback -----

73 // Called after a thermal frame chunk is sent.

74 void OnDataSent(const uint8_t *mac, esp_now_send_status_t status) {

75 canSend = true;

76 lastSendSuccessful = (status == ESP_NOW_SEND_SUCCESS);

77 }

78

79 // ----- ESP-NOW Receive Callback -----

80 // This callback is triggered when any ESP-NOW data is received.

81 // It now uses the corrected signature to match: (const esp_now_recv_info_t*, const uint8_t*,

int).↪→

82 void OnDataRecv(const esp_now_recv_info_t *info, const uint8_t *data, int len) {

83 if (len == sizeof(ControllerMessage)) {

84 memcpy(&ctrlMsg, data, sizeof(ControllerMessage));

85 Serial.printf("Joystick Command Received - X: %d, Y: %d, Trigger: %d, LED: %d\n",

86 ctrlMsg.joyX, ctrlMsg.joyY, ctrlMsg.trigger, ctrlMsg.ledState);

87 }

13 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

88 }

89

90 // ----- Function to Send Thermal Camera Frame Chunks -----

91 // The frame is split into chunks and each chunk is sent via ESP-NOW.

92 void sendFrameChunks() {

93 for (uint8_t i = 0; i < TOTAL_CHUNKS; i++) {

94 FrameChunk *chunk = (FrameChunk *)malloc(sizeof(FrameChunk));

95 if (!chunk) return;

96

97 chunk->chunkIndex = i;

98 chunk->totalChunks = TOTAL_CHUNKS;

99 uint16_t offset = i * CHUNK_SIZE;

100 uint8_t actualSize = min(CHUNK_SIZE, TOTAL_PIXELS - offset);

101 memcpy(chunk->chunkData, &frame[offset], actualSize * sizeof(float));

102

103 canSend = false;

104 esp_now_send(controllerAddress, (uint8_t *)chunk, sizeof(FrameChunk));

105

106 // Wait until sending completes or timeout.

107 uint32_t timeout = millis() + 100;

108 while (!canSend && millis() < timeout) delay(1);

109

110 free(chunk);

111 delay(5); // pacing between chunks

112 }

113 }

114

115 void setup() {

116 Serial.begin(115200);

117 WiFi.mode(WIFI_STA);

118

119 // Initialize ESP-NOW and register callbacks.

120 if (esp_now_init() != ESP_OK) {

121 Serial.println(" ESP-NOW Init Failed");

122 return;

123 }

124 esp_now_register_send_cb(OnDataSent);

125 esp_now_register_recv_cb(OnDataRecv);

126

127 // Setup peer to transmit thermal data to the controller.

128 esp_now_peer_info_t peerInfo = {};

129 memcpy(peerInfo.peer_addr, controllerAddress, 6);

130 peerInfo.channel = 0;

131 peerInfo.encrypt = false;

132 if (esp_now_add_peer(&peerInfo) != ESP_OK) {

133 Serial.println(" Failed to add controller peer");

134 return;

135 }

136

137 // Initialize I2C (Wire) for MLX90640.

138 Wire.begin(22, 20); // Adjust pins as required

139 Wire.setClock(400000);

140 if (!mlx.begin(0x33, &Wire)) {

14 of 15

Group 8 MECENG 102B: πRo-BOT Final Report & Manual May 14 2025

141 Serial.println(" MLX90640 not found");

142 while (1) delay(10);

143 }

144 mlx.setMode(MLX90640_CHESS);

145 mlx.setRefreshRate(MLX90640_8_HZ);

146

147 Serial.println(" Turret Ready");

148

149 //Small Motor Spin

150 pinMode(BIN_1, OUTPUT);

151 pinMode(BIN_2, OUTPUT);

152 pinMode(LED_PIN, OUTPUT);

153 digitalWrite(BIN_2, LOW);

154 if (!ledcAttach(BIN_1, pwmFreq, pwmResolution)) {

155 Serial.println("Error: ledcAttach failed to configure the LEDC pin!");

156 }

157 pinMode(ENCODER_A, INPUT);

158 pinMode(ENCODER_B, INPUT);

159 }

160

161 void loop() {

162 // Read a frame from the thermal camera.

163 if (mlx.getFrame(frame) == 0) {

164 sendFrameChunks();

165 } else {

166 Serial.println(" Frame read failed");

167 }

168 delay(150); // Control the rate of frame transmission

169

170 //Motor Spin

171 // Detect rising edge of trigger (0 -> 1)

172 if (ctrlMsg.trigger && !prevTriggerState) {

173 Serial.println("Trigger received. Starting motor...");

174 cumulative_ticks = 0;

175 revolution_complete = false;

176 digitalWrite(LED_PIN, LOW);

177 attachInterrupt(digitalPinToInterrupt(ENCODER_A), encoderISR, RISING);

178 ledcWrite(BIN_1, duty_u8(20));

179 }

180 if (revolution_complete) {

181 ledcWrite(BIN_1, 0);

182 detachInterrupt(digitalPinToInterrupt(ENCODER_A));

183 digitalWrite(LED_PIN, HIGH);

184 //Serial.print("Revolution complete! Total ticks: ");

185 //Serial.println(cumulative_ticks);

186 }

187

188 prevTriggerState = ctrlMsg.trigger;

189 delay(10); // Small delay to prevent CPU hog

190 }

15 of 15

	Opportunity
	High-Level Strategy and Functional Outcomes
	Integrated Device Overview
	Function-Critical Decisions and Calculations
	Wrist and Waist Motors: NEMA17
	Firing Transmission: Polulu Motor
	Material Choice: PLA and Metal

	Finalized Diagrams
	Circuit Diagrams

	Reflections and Recommendations
	Bill of Materials
	CAD Design & Digital Twinning
	Overall Turret Layout and Major Sub-Components
	Transmission Close-Ups
	FunWee Water Gun Internal Firing Assembly
	Remote Control
	Attribution

	Code Implementation
	Remote Control – Event-Driven Implementation
	Water Turret – Event-Driven Implementation

